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The optimum current-carrier density distribution along the height of the branches 
of a thermoelectric element is obtained, which ensures minimum temperature at the 
cold junction taking into account the heat transfer at the hot junction. 

Investigations have recently been carried out to estimate the effect of the current- 
carrier density distribution along the arms of a semiconductor thermoelectric element on the 
efficiency of cooling devices [1-3]. 

Analysis of the operation of a nonuniform thermoelectric element when the cold junction 
is adiabatically insulated, when the hot junction is at constant temperature, has enabled 
the optimum change in the properties of the material along its length to give the maximum 
possible reduction in temperature at the cold junction to be obtained [4]. The physical 
parameters of the thermoelectric material was assumed to depend only on the current-carrier 
density and not on the temperature. This simplification was justified by the fact that in 
the materials used, which are intended for thermoelectric refrigerators (triple alloys based 
on BiaTe3), the physical properties vary only slightly over the operating temperature range. 
It was found that the maximum temperature drop with respect to the medium in the nonuniform 
thermoelectric element can be increased by 18~ compared with a thermoelectric element made 
of a uniform material with an optimum current-carrier density [4]. 

The formulation of the problem in a more general form, taking into account the finite 
heat transfer at the hot side, should enable the temperature-reduction advantage obtainable, 
compared with a uniform thermoelectric element, to be estimated for actual conditions and 
with a different degree of intensification of the heat exchange between the hot function 
and the medium. 

We will assume that both branches of the thermoelectric element, along which the heat 
propagates, are identical in their physical properties, but the thermoelectric coefficients 
are of opposite sign. The equation describing the temperature distribution along the length 
x of the branch of the thermoelectric element when a current density j flows through it 
has the form 

dx"d ' dT ) i z __iTde(x) ( ~ (x) + . . . . .  o. 
--~ ~ dx ( 1 ) 

The last two terms represent the Joule heat and the distributed Peltier heat, which occurs 
as a consequence of the density gradient along the branch of the thermoelectric element. 

We will assume that the cold side of the branch is adiabatically insulated, and that 
convective heat transfer occurs between the hot junction and the medium 

d x  x =  | 

dT / = ./~zTlx=o, 
dx Ix=o 

(2) 

We will also assume that the functional dependence on the density of the thermal conductiv- 
ity X, the electrical conductivity c, and the thermoelectric emf ~ obeys the classical Max- 
well statistics for the nondegenerate state of the electric-current carriers [i, 5]. 
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The set of equations describing the temperature distribution, the heat flow, and the 
density along the branches of the thermoelectric element can be represented in the normal 
Cauchy form 

"q = --' .! "Equ ~- - -  -- pz 'Tu  , 
"L ' o 

T = q ,  n = u ,  

where q = dq/dx; k' = dX/dn, etc. 

(3)  

The variational problem consistsin determining the piecewise-smooth function of the 
current-carrier density gradient u(x), where x6[0,1], which together with the solutions T(x) 
satisfies the given system (2) and (3), and ensures that minimum temperature is obtained 
at the cold junction 

T~=min Tl~=o. (4) 

This problem will be solved using the Pontryagin maximum principle [6]. It is obvious 
from physical consideration that no limitations are imposed on the change in density in 
this case. No appreciable increase in the electrical resistance in the region of the hot 
junction occurs under finite heat-exchange conditions when its temperature is fixed [4]. 
The optimum density distribution should automatically ensure a reduction in the parasitic 
heat flow from the hot to the cold junction. 

The Hamilton function, corresponded to the initial system, can be written as follows: 

H = - -  ~1 ~'qu + �9 - -  ] C T u  + ~2q + ~3u. (5 )  
o 

The boundary functional can be represented in the form 

= To + va (~oqo - -  ]aoTo) + v, (~lql - -  i=aT~ + a (T - -  T)), (6 )  

where the subscripts 0 andl relate to the cold and hot junctions, respectively. 

The conjugate set of equations with corresponding boundary conditions at both ends of 
the specified range of variation of the independent variable has the form 

OH ~l..(~u),__% 

OH ~ ]~'u, 

07" 

- -  ( ( ) ( ))  ~ = OH 1 ~, ~.' qu + __ ]~, 1 , 
(7) 

(8) 

1DIO = 0._____~ =:  u 1~11 - -  0 _ _ ~  = - -  ,~,2~, 
Oqo Oqt 

OTo )~ OT1 

~3o O~ -- v I (~,' q -- j~ . 'T) ,  ~'31 O~ = - -  = . . . .  v2 (~ 'q  - -  i s ' T ) .  
Ono Oth 

Taking into account the conditions of the particular mode of operation [6], we obtain the 
relationship between the conjugate functions inside and on the boundary of the region 

~1 + ]~'q = -- ~ (~'q -- ]~'T). (9) 
o 

The d e n s i t y  g r a d i e n t ,  t a k i n g  i n t o  a c c o u n t  t h e  c o n d i t i o n s  o f  t h e  p a r t i c u l a r  mode o f  o p e r a t i o n ,  

and the Kelly conditions [71: Ou ----0, -~-z \-~u)=0, -~- O~u =0 can be expressed solely 

in terms of the initial functions 

u=l [~(~.q--1~T)--(--~7- + icCq ) ( +  + 2~'q - } - ~  } j /  (L--~ i +  -t- pz'q ) § ( - ~  + ]~"q )-- 
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Fig. i. Optimum density distribution n (cm -3) along the 
height x(cm): I) a = 0.05, 2) 0.i, 3) 0.2, 4) 0.35, 5) 
0.5, and 6) 1 W/(cm='K). 

Fig. 2. Profile of the cold-junction temperature To(OK) 
along the height of the thermoelectric element x (cm): i) 
a = 0.05; 2) 0.i; 3) 0.2; 4) 0.35; 5) 0.5; 6) i W/(cm=.K); 
and 7) a = =. 

_ r T ()Jq j6t'r) ](k 'q--ja 'T)---[;~'q--jcz"r - -  ~" (~"q-- ja 'r)](~-7-q-Ja 'q  )l �9 (10) 

Using relation (9), the boundary conditions in (8) on the left can also be written solely 
in terms of the initial functions: 

~' q --  jcz'T 
~J~ jot (~,, q _ je'T) jz 

)~ o' J ~" q 

~10 
(ii) 

To solve the problem expressed by the sets of first-order differential equations (i) 
and (7) with boundary conditions (2) and (8), and the optimality condition (i0), we used the 
numerical Newton's method [8]. The initial values of the temperature and density are the 
variable parameters. On the wide boundary when x = I, there is a discrepancy for the tem- 
perature and density, which Can be written in terms of the temperature and heat flux. After 
four-five iterations, with appropriately chosen initial values for the temperature and 
density, the boundary values at the right end can be satisfied with a specified accuracy. 

The calculations were carried out for height d = 1 cm, and T = 2930K, and the coeffi- 
cient a was specified to have different values in the range from 0.05 to 1 W/(cm='~ In 
individual vases the values of a in the calculations were taken to be considerably greater 
in order to compare the results obtained with the results of the solution of the same problem 
but at a fixed temperature of the hot junction. In view of the invariance of the j'd and 
a'd transformation, all the results can be recalculated for the corresponding values of the 
current, heat transfer, and height. 

As a result of these calculations, we obtained the optimum current-carrier density 
distribution along the arms of the thermoelectric element which ensures a maximum drop be- 
tween the medium and the cold junction. This distribution is characterized by an almost- 
linear increase in density from the hot to the cold junction. The change in the density 
along the height of the branch for different heat-transfer coefficients with corresponding 
current densities are shown in Fig. i, from which it follows that as the heat transfer in- 
creases the carrier density on the cold side increases and that on the hot side decreases. 
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Fig. 3. Supply current density j (A/cm ~) (curves i, la, 
2, and 2a) and relative temperature drop (3, 3a) as a func- 
tion of the heat-transfer coefficient a (W/cm2.K): I) n = 
const, 2) var, la and 2a) values of the current for a = ~, 
and 3a) value of the relative change in the drop for a = =. 

Fig. 4. Change in the temperature of the cold junction 
To (K)as a function of the heat-transfer coefficient a 
(W/cm2.K): i) n = const, 2) vat. 

TABLE i. Maximum Temperature Drop between the Cold Junction 
and the Medium for Different Heat-Transfer Coefficients at 
the Hot Junction 

ATop, 149;9 1640 1749 18,, I I 

Thus for a = 0.05 W/(cm2"K) the density which ensures an additional drop of 3~ compared 
with a uniform distribution decreases from the cold to the hot junction by a factor of 4 
from 1.45.1019 to 0.32.1019 cm -3. For a heat-transfer coefficient of 0.5 W/(cm2.K), the ad- 
ditional drop is 12.5~ and n varies from 3.02.10 ~9 to 6.4.1017 cm -~. 

The change in temperature along the height corresponding to the optimum distribution 
of n(x) for different heat-transfer coefficients is shown in Fig. 2. The figure also shows 
a graph of the temperature distribution for a nonuniform thermoelectric element at a + =, 
taken from [4]. It can be seen from these graphs that as the heat-transfer increases the 
temperature distributions approach the curve obtained as a + ~. The concavity of the curves 
increases as the heat transfer increases, and it is opposite to the convexity of the tem- 
perature-distribution curve for the case n = const. The maximum difference in AT which can 
be achieved for an optimum density distribution compared with n = const for a = 0.5 
W/(cm2"K) is 12.50K, and for a = i W/(cm2.K) it is 15~ whereas for a + | the theoretical 
increase in the drop compared with a constant distribution is 18~ For heat-transfer co- 
efficients which increase from 0.05 to 0.5 W/(cm2"K), the additional drop compared ~th 
n = const increases quite sharply, and then gradually approaches its theoretical limit, 
which is 25% (Fig. 3). 

In Fig. 3 we show the optimum current density which gives maximum temperature drop as 
a function of the heat-transfer coefficients. Compared with a constant distribution n = 
const the value of the current density shifts to higher values. The dependence of the maxi- 
mum drop on j has a fairly wide spread, if we choose its optimum distribution n(x) for each 
value of the current. 

In Fig. 4 we show the minimum temperature of the cold junction as a function of the 
heat-transfer coefficients. It follows from the figure that the change in temperature as 
the heat transfer increases in the case of a nonuniform thermoelectric element has a 
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smoother form than for n = const. Whereas for n = const with a = 0.25 and 0.5 W/(cm2-K) 
the drop AT differs from its theoretical maximum of 75~ by only 7.5 and 3.5~ (as a + ~), 
for the same values of a in a nonuniform thermoelectric element these differences for AT 
amount to 15 and 9~ (ATop t = 93~ as a + =). The same drop AT in a nonuniform thermo- 
electric element can be achieved for much lower values of the heat-transfer coefficients 
than in a uniform version. Thus, To = 221.5~ is obtained with a = 0.5 W/(cm2-K) and n = 
const, and with a = 0.15 W/(cm=.K) for an optimum distribution. As regards the theoreti- 
cally possible drop when a + ~ in the uniform case, it is obtained with a = 0.2 W/(cm2"K) 
in a nonuniform thermoelectric element for similar densities of 45-48 A/cm = in both cases. 

The optimum solutions obtained for different values of the heat-transfer coefficient 
have lower limits of the change in concentration in the region of the hot junction, differ- 
ing by a factor of ten. At the cold junction for the same heat transfers, the density 
differs by a factor of 2-2.5. Thus, for a = 0.05 W/(cm='K) the density at the hot junction 
n = 0.32"1019 cm -3, and for a = 1 W/(cm2"K), n = 0.35"1018 cm -3. At the cold junction, for 
the same heat transfers, the densities are 1.4"1019 and 3.4"1019 cm -3, respectively. 

We can determine how critical the optimum solution, calculated for a specific value of 
the heat-transfer coefficient, is to the other heat-exchange conditions from the hot junc- 
tion to the surrounding medium. To do this we will obtain solutions of the heat-conduction 
equation (i) for a temperature drop ATca I for different heat-exchange conditions at the hot 
junction when the distribution n(x) is optimum with a = 0.2 W/(cm2"K). The results of 
calculations for the temprature drops for the corresponding optimum current densities are 
shown in the table. In the last row we have written the values of the temperature drops 
for n = const. These results show that the distribution of n along the branches is not 
critical with respect to the value of the heat-transfer coefficient. 

NOTATION 

T, absolute temperature; AT, temperature drop between the cold junction and the medium; 
q, temperature gradient; n, current-carrier density; u, density gradient; a, heat-transfer 
coefficient; x, coordinate of the length; d, height of the thermoelectric element; X, o, ~, 
thermal conductivity, theelectrical conductivity, and the thermoelectric coefficient re- 

spectively; and j, current density. 
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